Tiny cause with large effects: the origin of the large magnetoelectric and magnetoelastic effect in EuTiO₃

Annette Bussmann-Holder, Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany

The magnetoelectric coupling in the perovskite oxide $EuTiO_3$ (ETO) is analyzed within a spinphonon coupled Hamiltonian. It is shown that the *tiny* magnetostriction which accompanies the onset of antiferromagnetic order at T_N =5.7K induces a *substantial* hardening in the soft optic mode and a drop in the dielectric constant. The reduction of magnetostriction with increasing magnetic field reverses this behavior. While for small fields ferromagnetic order rapidly sets in accompanied by a volume expansion, this is destroyed with increasing fields and a strange paramagnetic state obtained. This exotic observation can be understood as stemming from the interplay between the enhanced oxygen p Ti d dynamical covalency which alters the crystal field at the Eu site and inhibits the virtual transition from 4f⁷ to 4f⁶5d responsible for ferromagnetic order.

In addition, it is shown that new thermal expansion experiments at high temperatures are an excellent tool to detect the structural instability in ETO since a pronounced anomaly takes place here. Also this feature is well explained within the polarizability model and evidences that a single model is well suited in describing the exotic behavior of ETO.

Finally, new μ SR measurements are described which clearly demonstrate that magnetic domains (most likely fluctuating) exist in ETO at temperatures exceeding the structural instability. From these data a new temperature scale is defined where the fluctuations become more correlated and an increase in their correlation length sets in.